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Abstract

The paper deals with a computational investigation of effective moduli of brittle materials weakened by microcracks. The
study is based on a suitable adaptation of an indirect boundary element method, namely the displacement discontinuity method.
Various aspects of microcracks size and orientation are investigated. For tensile loading (open cracks), the numerical results show
good agreement with the classical non-interacting cracks approximation. Comparisons with some not fully random configurations
are also presented. When crack – boundary interactions are taken into account, the results agree rather well with the differential
approximation, but calculations under compressive loadings are much more complicated because of friction and sliding on crack
faces, so an iterative algorithm for sliding and frictional cracks is used. The effective compliance in this case shows very little
increase compared with the case of tensile loadings. Comparisons with some theoretical approximations are presented.

l. Introduction

Continuum damage mechanics (CDM) has become
a suitable framework for the study of non-linear
response of large class of materials such as concrete,
rocks or ceramics. In the CDM field, the elastic
parameters are assumed to be affected by pre-existing
or growing microcracks. Macroscopic
phenomenological approaches have been proposed for
modeling this degradation process (see Ref. [15] for a
complete review). Micromechanical modeling of
cracked solids has also been the subject of recent works
[e.g. 11,16,2l]. The determination of effective stiffness
for bodies containing microdefects appears through
such studies as one of the fundamental aspects of

micromechanical modeling. This subject is usually
treated from various theoretical standpoints.
In the non-interacting or dilute concentration
approximation, microcracks are assumed to be isolated
in the initial medium (Taylor model). The self-
consistent method consists in the calculation of crack
opening displacements (COD) for microcracks
embedded in the unknown effective medium [3].
Interactions between microcracks are approximately
taken into account through this assumption. The
differential scheme is similar to the self-consistent one
but interactions are considered through an incremental
increase of crack density [8], Although all these
methods provide accurate approximation for low crack
densities, they lead to some non-negligible differences
in the case of moderate and strong densities. The
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essential reason is that, when the density increases,
microcracks become very close and their spatial
locations (interactions) must play an important role on
the overall properties. Kachanov [13] has used a
superposition technique (or pseudo-tractions method)
for such study. Recently, Ju and Tseng [12] have
developed a statistical method which seems to give
promising results. In general, however, it appears that
the development of a suitable computing tool for
treating elastic media with multiple interacting
microcracks is of great interest. The displacernent
discontinuity method (DDM), originally developed by
Crouch [6], was retained. In DDM (a plane strain
boundary element method), each crack is simply
represented by rectilinear segments on which the vector
of displacement discontinuities is constant. Moreover
this method can be applied to the complicated case of
compressive loadings where microcracks can be closed
and subjected to friction (see Ref. [10]). The outline of
this paper is as follows. After a brief presentation of
some theoretical approximations, we describe the
displacement discontinuity method (DDM) and its
adaptation for the present study. Afterwards, results for
tensile loadings, i.e. open cracks, will be presented.
Various aspects concerning microcrack size or
orientation will be investigated. Special attention will
be paid to microcrack – boundary interaction effects.
The last section presents same significant results for
compressive loadings.

2. Theoretical and numerical aspects for elastic
moduli of cracked media

2.1. Theoretical models

In the last decades, the question of effective moduli
for microcracked media has focused attention of
several researchers (see Ref. [14]). Consider a
representative volume element (RVE) V [9] which
contains a set of distributed microcracks. The average
strain tensor of the RVE is defined as. *eε ε ε= + ,
where eε  and *ε  are respectively the elastic and the

damage-induced strains. Similarly, the effective
compliance is de- fined as 0 *S S S= + , where 0S  and

*S  are respectively the elastic and the damage-induced
compliance. This effective compliance relates the
average strain to the average stress σ  by :

Sε σ= (1)
When stress boundary conditions are imposed on the
RVE, a- is equal to the remote applied stress. In two-
dimensional analysis, the inelastic part of strains are
then defined as (see [10,14;18,20]) :
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The vector D(k) represents the crack opening
displacement on the k th microcrack; n(k) is the unit
outward normal vector of the k th microcrack whose
length is 2l(k), A represents the area of the RVE. From
this formula it appears that in order to determine
effective compliance one needs to evaluate the COD on
all microcracks. The main difficulty in such a
calculation is to find the solution (second Green tensor)
of the elastic problem for a solid with many interacting
microcracks. The simplest way to avoid it is to neglect
the microcrack interactions (Taylor model), but in the
case of moderate or high density it is necessary to take
microcrack interactions into account. Several
theoretical approximations exist for elastic media with
interacting microcracks. The self-consistent methods
(SCM) due to Hill and developed for cracked solids by
Budiansky and O’Connel [3] considers that defects are
embedded in the unknown effective material. The key
parameter for such a study is the crack density ρ
defined in two-dimensional problems as :

( )21 k

k
l

A
ρ = ∑ . (3)

The classical formulation of the SCM leads to a
finite critical value for the density [3] ; this is a
physically unacceptable result. An improvement of the
SCM, proposed by Christensen and Lo [4] is known as
the three-phase model or the generalized self-consistent
method. Another simpler improvement is the
differential scheme (DIF) which assumes also that
microcracks are embedded in the unknown effective
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medium, but the crack density is increased in an
incremental manner. Thus, the elastic moduli are
calculated for each increment dρ by resolution of
differential equations [8,9,l4,19]. An excellent
summary of the main results given by the different
schemes for microcracked materials can be found in the
review paper by Kachanov [14]. Since all these
theoretical approximations give very different results
for moderate and strong densities up to 0.4, the
objective of this work is to investigate interaction
effects through numerical simulations.

2.2. Displacement discontinuity method for solids
containing multiple cracks

The numerical method used for the study is an
adaptation of the two-dimensional displacement
discontinuity method (DDM) originally proposed by
Crouch [6] in plane strain. The domain is discretized by
a finite number of elements with unknown displacement
discontinuities. Let us first define a straight crack line Γ
in an infinite domain (Fig. 1).

Fig. 1. Infinite medium with a crack. Ds and Dn are respectively the
shear and normal COD.

Fig. 2. Discretization of a finite medium in DDM.

The two displacement discontinuities are defined in all
points of Γ as:

( ) ( )1 1,0 ,0i i iD u x u x− += −  i = n, s. (4)
The elastic solution (displacements and stresses field at
any point x of the medium) of this problem can be
written as follows (see for example [7,17,22]) :

( ) ( ) ( ),i jU x x D dζ ζ
Γ

= Γ∫ ijA (5)

ijA  is known as the fundamental solution associated
with the application of a unit discontinuity
displacement Dj, imposed in the direction j at point ζ of
the crack face. In two-dimensional elasticity ijA  can be
expressed as follows (see e.g. [22]) :
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In this expression n represents the unit normal direction
of the crack; k = n when j corresponds to the normal
discontinuity ; otherwise k = s. yi and r are defined by :
y, =Xi – ζi and r2 =yiyi. δik is the Kronecker symbol. By
differentiation of Eq. (6), one can evaluate εij(x) and
then σij(x). The generalization to boundary value
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problems is easy and consists of describing the frontier
of the considered solid by N rectilinear elements and
superposing the effects of these (Fig. 2). Let us denote
now j

nD  and j
sD  respectively the normal and shear

displacernent discontinuities of the jth element
(represented by one node). After some lengthy
calculations which require frame transformation
(between global and local coordinates) and analytical
calculations of integrals, the method leads to the
following linear algebraic system [7] :

1

N
jj j jj j i

ss s sn n s
j

C D C D b
=

+ =∑

1

N
jj j jj j i

ns n nn n n
j

C D C D b
=

+ =∑       for i = 1 to N. (7)

The vector b represents the boundary conditions
(stresses or displacements) ; C is a non-symmetric
influence coefficients matrix which contains four
elementary matrices. For example Csn is associated with
the influence of a normal COD on shear stress or
displacements. C depends on the elastic properties and
the geometry of microcracks. The geometrical
dependence allows interaction to be included since it is
directly related to the relative spatial configurations of
microdefects. Resolution of the system (7) gives the

unknown COD j
nD  and j

sD  for all elements. Stresses
and displacement field at any point of the medium can

then be determined by summation of the effects of all
elements. It must be noted that there is no physical
significance of the discontinuities at the frontier of the
domain, but, in the case of a microcrack element, j

nD
and j

sD  represent well the average value of crack
opening displacements which are needed for the
effective moduli calculation. This is one of the greatest
advantages of the DDM over other methods like the
superposition technique [13]. The DDM is adapted in
this work for solids containing multiple interacting
cracks. A generator is built, which allows the desired
random or non-random microcrack population to be
constructed. The parameters of this automatic
generation are the sizes, orientations and locations of
the microcracks. For all simulations, microcrack
intersections are prohibited. This was achieved by
checking new generated microdefects. With such a
condition, the centers of the cracks cannot be
considered as uncorrelated, but it is expected that this
limitation will not have a great influence on the trends
of the numerical results on average (see also Ref. [14]).

3. Computer experiments for open microcracks

3.1. Randomly distributed microcracks

Computations were conducted on a square domain
of unit area A (Fig. 3). First simulations concern the
case of randomly located and orientated microcracks.
In order to separate crack – crack interactions and
crack – boundary interaction effects, two types of
simulations are performed.

3.1.1. Simulations without microcrack – boundary
interaction effects

These simulations are done by placing stress
boundary conditions at infinity. For a statistical
realization (one density ρ), microcrack sizes were kept
constant. The density parameter ρ (see Eq. (3)) is
increased by increasing the number and/or size of
microcracks. The numerical results are shown in Fig. 4.
Each point of this figure represents a mean value of two

Fig. 3. Example of an array of randomly oriented cracks (p = 0.1).
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computations done in the horizontal and vertical
directions. In fact, the two results are very close,
proving the good accuracy of the method. Comparisons
are done with non-interacting cracks (NIC) SCM and
DIF results. We observe that our numerical results are
in agreement with the non-interacting cracks
approximation for a wide range of densities. This is in
accordance with recent results obtained by Kachanov
[14] or Bertaud et al. [2] who used the numerical
pseudo-tractions method. Such results can be
interpreted as a cancellation of the two competing
effects (amplification and shielding) which rise from
the interactions when microcracks are randomly
distributed in space.

In order to check the relevance of crack density as a
fundamental parameter, we have also carried out
simulations with random crack size (in every
realization). The microcrack size is considered to vary
in average between a minimum value lmin and a
maximum value equal on average to 10 lmin. The
corresponding results are shown in Fig. 5 and also lead
to agreements with the NIC approximation. These
results indicate that, even for microcracks with very
different sizes, interaction effects also cancel because
of randomness of the spatial distribution.

3.1.2. Effects of microcrack – boundary interactions
The sample boundary effects are also numerically

investigated. The frontier of the area A is now
discretized and the preceding microcrack distributions
are used. Fig. 6 shows comparisons with the theoretical
methods. One can note a clear difference with the
preceding results. The numerical values are rather in
agreement with the differential approximation. These
results suggest that interaction effects cannot be
neglected for the practical case of a finite domain.

3.2. Case of parallel cracks

The study of parallel microcracks distribution is of
practical interest since under tensile loadings, the most

open microcracks are normal to the load direction.
Simulations are conducted on microcracks array shown
for example in Fig. 7. The variation of the effective
modulus (Fig. 8) shows that the shielding effect of
microcrack interactions is more pronounced here than
in the case of randomly oriented cracks.

Moreover, the decrease of the modulus for the parallel
microcracks distribution is more pronounced than for
the random distribution. Finally we note that the
numerical results again coincide with the NIC
approximation. When microcrack – boundary
interactions are considered the results show also good
agreement with the differential method (Fig. 9).

4. Case of compressive loadings

Under compression, interactions become much more
complex because of crack closure and sliding on crack
faces. Hori and Nemat-Nasser [10] have studied in the
framework of SCM the stress – induced anisotropy due
to frictional sliding of microcracks. Because of
theoretical difficulties, the necessity of computer
experiments appears here to he of primary interest and
may allow the study of a large class of problems.

4.1. Numerical treatment of closed cracks by DDM

In the numerical simulations, cracks are prescribed
to not overlap (non-interpenetration of crack faces).
This condition, classically known as Signorini’s

Fig. 7. Example of parallel microcrack array.
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condition, implies in the DDM that the normal COD Dn

cannot be strictly positive. Let us denote by σn and σs
respectively the normal and tangential stresses
associated with a microcrack.

Hypothesis : sliding is assumed possible for closed
microcracks. Coulomb’s friction law was retained for
this study.

Conditions on closed cracks are then :
no sliding :
if s nσ µ σ<  then Dn = Ds = 0
friction with sliding :
if s nσ µ σ≥  then s nσ µ σ=  ;
Dn = 0 and 0sD ≠

µ is the friction coefficient, equal to 0.5 in this study.
The numerical resolution was done by means of an

iterative algorithm in which opening, closure and
sliding on microcrack faces are checked. In a first
approach, a Gauss – Seidel algorithm was used. Let us
note, however, that a conjugate gradient approach (see
Ref. [1]) can give similar results.

4.2. Numerical results on effective compliance under
uniaxial compression

Computations carried out in this section are done
with constant microcrack length at each density level.
The simulations correspond to stationary state of
defects. No kinetic equations are investigated here.
This is, however, a numerical aspect under
investigation. The initial material is assumed to he
isotropic with plane-strain conditions. In Voigt’s two-
dimensional notation, Hooke’s law, which relates the
effective strain iε , and stress jσ , (i, j = 1, 2, 3), in a

damaged elastic material is : i ij jSε σ= where S  is the
effective compliance.

Initial elastic parameters are taken as : E0= 5 X 104

MPa, v0 = 0.2. Thus, the undamaged compliance 0S  is
given in plane-strain by :

0 0
0

0 0
0

1 0
1 1 0

0 0 2
E

ν ν
ν ν ν

− − 
+  − − 

  
with

0 0 5 1
11 22 1.92 10 MPaS S − −= = ×
0 0 5 1

12 21 0.48 10 MPaS S − −= = − ×
0 5 1

33 4.8 10 MPaS − −= × .

Fig 11. Example of parallel microcracks distribution tested under
compressive loading.

4.2.1. Randomly distributed microcracks
The sample shown in Fig. 3 is subjected to uniaxial

compression. The variations of the compIiances 22S  (in
the loading direction) and 11S  with density ρ  are
similar. Results for 11S  and 33S  are plotted in Fig. 10.
Unlike the case of open cracks (important increase on
compliance), very little increase is registered here. This
is clearly due to the closure constraint imposed by
compression on some microcracks. 33S  remains quite
constant.

4.2.2. Effect of microcracks inclined at π/6 from
loading axis

The impact of crack orientation is also investigated.
For this purpose, simulations were realized with arrays
in which cracks are oriented at 30° from the loading
axis (Fig. 11). The numerical results show significant
anisotropy on the different compIiances (Fig. 12). From
the comparisons shown in this figure, we can conclude
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that the results for 11S  and 21S  agree more with the
SCM curve than with the NIC one (calculated from
Ref. [10]). This suggests that microcrack interaction
effects cannot be neglected for compressive loadings.
Further investigations are needed to confirm this
conclusion. Finally, some shielding effects are noted
for 22S  and 33S .

5. Concluding remarks

The aim of this numerical study is to investigate the
impact of interactions on the effective stiffness of
microcracked media by means of the displacement
discontinuity method. A slight adaptation of the DDM
(generation of random or non-random crack
distribution, iterative algorithm for closed microcracks)
is proposed. Since the unknown variables of DDM are
COD on microcracks, the effective moduli calculation
is straightforward. For tensile loadings, and when only
crack – crack interactions are considered, the numerical
results follow the non-interacting cracks approximation
for a wide range of densities. This is due to the
cancellation of amplification and shielding mechanisms
associated with interactions where microcracks are
randomly distributed. Moreover the numerical
simulations showed that these conclusions hold for
parallel distribution. Similar conclusions have been
made by Kachanov [14] using a pseudo-traction
method. It can be therefore concluded that, the non-
interaction hypothesis will be sufficient for constitutive
modeling. However, when microcrack – boundary
interactions are also considered, the results indicate
good agreement with the differential scheme. Under
compressive loading, some microcracks are closed and
subjected to friction. The results presented in this paper
showed that for randomly distributed microcracks,
friction effects decrease the impact of microcracks an
effective compliance. For the studied parallel
distribution, the results seem to be more in agreement

with the self-consistent method. Stress – induced
anisotropy is also noticed. Current numerical
investigations are in work on more complex
distributions and on effective moduli in anisotropic
media.
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Fig. 4. Effective Young’s modulus for randomly oriented microcracks. Crack size is constant: comparisons with the non-interacting cracks
(NIC), self-consistent (SCM) and differential scheme (DIF).

Fig. 5. Effective Young’s modulus for full random distribution : comparisons with NlC, DIF and SCM.
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Fig. 6. Effect of microcrack-boundary interactions for random distribution : comparisons with NlC, DIF and
SCM
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Fig. 8. Effective Young’s modulus, for parallel microcracks : comparisons with the NIC, the DIF and the SCM schemes.
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Fig. 9. Effect of microcrack – boundary interactions for parallel distribution : comparisons with the NIC, the DIF and the SCM schemes.

Fig. 10. Effective compliance far randomly microcracked medium under compressive loading (µ = 0.5).



V. Renaud et al. / Computational Materials Science 5 (1996) 227-337237

1

1.01

1.02

1.03

1.04

1.05

1.06

0 0.05 0.1 0.15 0.2

Density

C
o
m
p
l
i
a
n
c
e
 
r
a

S11/S011 SCM

S11/S011

S11/S011  NIC

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0 0.05 0.1 0.15 0.2

Density

C
o
m
p
l
i
a
n
c
e
 
r
a

S33/S033
S33/S033 SCM
S33/S033 NIC

Fig, l2. Compressive loading. Effective compliance ratio for medium weakened by a set of parallel microcracks oriented at π/6 from load

direction (µ = 0.5) : 11S , 22S , 21S , 33S .
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Fig, l2. (continued).


