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Abstract

The paper deals with a computational investigation of effective moduli of brittle materials
weakened by microcracks. The study is based on a suitable adaptation of an indirect boundary
element method, namely the displacement discontinuity method. Various aspects of microcracks size
and orientation are investigated. For tensile loading (open cracks), the numerical results show good
agreement with the classical non-interacting cracks approximation. Comparisons with some not fully
random configurations are also presented. When crack – boundary interactions are taken into account,
the results agree rather well with the differential approximation, but calculations under compressive
loadings are much more complicated because of friction and sliding on crack faces, so an iterative
algorithm for sliding and frictional cracks is used. The effective compliance in this case shows very
little increase compared with the case of tensile loadings. Comparisons with some theoretical
approximations are presented.

l. Introduction

Continuum damage mechanics (CDM) has become a suitable framework for the study of
non-linear response of large class of materials such as concrete, rocks or ceramics. In the
CDM field, the elastic parameters are assumed to be affected by pre-existing or growing
microcracks. Macroscopic phenomenological approaches have been proposed for modeling
this degradation process (see Ref. [15] for a complete review). Micromechanical modeling of
cracked solids has also been the subject of recent works [e.g. 11,16,2l]. The determination of
effective stiffness for bodies containing microdefects appears through such studies as one of
the fundamental aspects of micromechanical modeling. This subject is usually treated from
various theoretical standpoints. In the non-interacting or dilute concentration approximation,
microcracks are assumed to be isolated in the initial medium (Taylor model). The self-
consistent method consists in the calculation of crack opening displacements (COD) for
microcracks embedded in the unknown effective medium [3]. Interactions between
microcracks are approximately taken into account through this assumption. The differential
scheme is similar to the self-consistent one but interactions are considered through an
incremental increase of crack density [8], Although all these methods provide accurate
approximation for low crack densities, they lead to some non-negligible differences in the
case of moderate and strong densities. The essential reason is that, when the density increases,
microcracks become very close and their spatial locations (interactions) must play an
important role on the overall properties. Kachanov [13] has used a superposition technique (or
pseudo-tractions method) for such study. Recently, Ju and Tseng [12] have developed a
statistical method which seems to give promising results. In general, however, it appears that
the development of a suitable computing tool for treating elastic media with multiple
interacting microcracks is of great interest. The displacernent discontinuity method (DDM),
originally developed by Crouch [6], was retained. In DDM (a plane strain boundary element
method), each crack is simply represented by rectilinear segments on which the vector of
displacement discontinuities is constant. Moreover this method can be applied to the
complicated case of compressive loadings where microcracks can be closed and subjected to



friction (see Ref. [10]). The outline of this paper is as follows. After a brief presentation of
some theoretical approximations, we describe the displacement discontinuity method (DDM)
and its adaptation for the present study. Afterwards, results for tensile loadings, i.e. open
cracks, will be presented. Various aspects concerning microcrack size or orientation will be
investigated. Special attention will be paid to microcrack – boundary interaction effects. The
last section presents same significant results for compressive loadings.

2. Theoretical and numerical aspects for elastic moduli of cracked media

2.1. Theoretical models

In the last decades, the question of effective moduli for microcracked media has focused
attention of several researchers (see Ref. [14]). Consider a representative volume element
(RVE) V [9] which contains a set of distributed microcracks. The average strain tensor of the
RVE is defined as. *eε ε ε= + , where eε  and *ε  are respectively the elastic and the damage-
induced strains. Similarly, the effective compliance is de- fined as 0 *S S S= + , where 0S  and

*S  are respectively the elastic and the damage-induced compliance. This effective compliance
relates the average strain to the average stress σ  by :

Sε σ= (1)

When stress boundary conditions are imposed on the RVE, a- is equal to the remote applied
stress. In two-dimensional analysis, the inelastic part of strains are then defined as (see
[10,14;18,20]) :
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The vector D(k) represents the crack opening displacement on the k th microcrack; n(k) is the
unit outward normal vector of the k th microcrack whose length is 2l(k), A represents the area
of the RVE. From this formula it appears that in order to determine effective compliance one
needs to evaluate the COD on all microcracks. The main difficulty in such a calculation is to
find the solution (second Green tensor) of the elastic problem for a solid with many
interacting microcracks. The simplest way to avoid it is to neglect the microcrack interactions
(Taylor model), but in the case of moderate or high density it is necessary to take microcrack
interactions into account. Several theoretical approximations exist for elastic media with
interacting microcracks. The self-consistent methods (SCM) due to Hill and developed for
cracked solids by Budiansky and O’Connel [3] considers that defects are embedded in the
unknown effective material. The key parameter for such a study is the crack density ρ defined
in two-dimensional problems as :
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The classical formulation of the SCM leads to a finite critical value for the density [3] ; this
is a physically unacceptable result. An improvement of the SCM, proposed by Christensen
and Lo [4] is known as the three-phase model or the generalized self-consistent method.
Another simpler improvement is the differential scheme (DIF) which assumes also that
microcracks are embedded in the unknown effective medium, but the crack density is
increased in an incremental manner. Thus, the elastic moduli are calculated for each increment
dρ by resolution of differential equations [8,9,l4,19]. An excellent summary of the main
results given by the different schemes for microcracked materials can be found in the review



paper by Kachanov [14]. Since all these theoretical approximations give very different results
for moderate and strong densities up to 0.4, the objective of this work is to investigate
interaction effects through numerical simulations.

2.2. Displacement discontinuity method for solids containing multiple cracks

The numerical method used for the study is an adaptation of the two-dimensional
displacement discontinuity method (DDM) originally proposed by Crouch [6] in plane strain.
The domain is discretized by a finite number of elements with unknown displacement
discontinuities. Let us first define a straight crack line Γ in an infinite domain (Fig. 1). The
two displacement discontinuities are defined in all points of Γ as:

( ) ( )1 1,0 ,0i i iD u x u x− += −  i = n, s. (4)

Fig. 1. Infinite medium with a crack. Ds and Dn are respectively the shear and normal COD.

The elastic solution (displacements and stresses field at any point x of the medium) of this
problem can be written as follows (see for example [7,17,22]) :

( ) ( ) ( ),i jU x x D dζ ζ
Γ

= Γ∫ ijA (5)

ijA  is known as the fundamental solution associated with the application of a unit
discontinuity displacement Dj, imposed in the direction j at point ζ of the crack face. In two-
dimensional elasticity ijA  can be expressed as follows (see e.g. [22]) :
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In this expression n represents the unit normal direction of the crack; k = n when j corresponds
to the normal discontinuity ; otherwise k = s. yi and r are defined by : y, =Xi – ζi and r2 =yiyi.
δik is the Kronecker symbol. By differentiation of Eq. (6), one can evaluate εij(x) and then
σij(x). The generalization to boundary value problems is easy and consists of describing the
frontier of the considered solid by N rectilinear elements and superposing the effects of these
(Fig. 2). Let us denote now j

nD  and j
sD  respectively the normal and shear displacernent

discontinuities of the jth element (represented by one node). After some lengthy calculations
which require frame transformation (between global and local coordinates) and analytical
calculations of integrals, the method leads to the following linear algebraic system [7] :



Fig. 2. Discretization of a finite medium in DDM.
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The vector b represents the boundary conditions (stresses or displacements) ; C is a non-
symmetric influence coefficients matrix which contains four elementary matrices. For
example Csn is associated with the influence of a normal COD on shear stress or
displacements. C depends on the elastic properties and the geometry of microcracks. The
geometrical dependence allows interaction to be included since it is directly related to the
relative spatial configurations of microdefects. Resolution of the system (7) gives the
unknown COD j

nD  and j
sD  for all elements. Stresses and displacement field at any point of

the medium can then be determined by summation of the effects of all elements. It must be
noted that there is no physical significance of the discontinuities at the frontier of the domain,
but, in the case of a microcrack element, j

nD  and j
sD  represent well the average value of crack

opening displacements which are needed for the effective moduli calculation. This is one of
the greatest advantages of the DDM over other methods like the superposition technique [13].
The DDM is adapted in this work for solids containing multiple interacting cracks. A
generator is built, which allows the desired random or non-random microcrack population to
be constructed. The parameters of this automatic generation are the sizes, orientations and
locations of the microcracks. For all simulations, microcrack intersections are prohibited. This
was achieved by checking new generated microdefects. With such a condition, the centers of
the cracks cannot be considered as uncorrelated, but it is expected that this limitation will not
have a great influence on the trends of the numerical results on average (see also Ref. [14]).

3. Computer experiments for open microcracks

3.1. Randomly distributed microcracks

Computations were conducted on a square domain of unit area A (Fig. 3). First simulations
concern the case of randomly located and orientated microcracks. In order to separate crack –
crack interactions and crack – boundary interaction effects, two types of simulations are
performed.



Fig. 3. Example of an array of randomly oriented cracks (p = 0.1).

3.1.1. Simulations without microcrack – boundary interaction effects
These simulations are done by placing stress boundary conditions at infinity. For a

statistical realization (one density ρ), microcrack sizes were kept constant. The density
parameter ρ (see Eq. (3)) is increased by increasing the number and/or size of microcracks.
The numerical results are shown in Fig. 4. Each point of this figure represents a mean value of
two computations done in the horizontal and vertical directions. In fact, the two results are
very close, proving the good accuracy of the method. Comparisons are done with non-
interacting cracks (NIC) SCM and DIF results. We observe that our numerical results are in
agreement with the non-interacting cracks approximation for a wide range of densities. This is
in accordance with recent results obtained by Kachanov [14] or Bertaud et al. [2] who used
the numerical pseudo-tractions method. Such results can be interpreted as a cancellation of the
two competing effects (amplification and shielding) which rise from the interactions when
microcracks are randomly distributed in space. In order to check the relevance of crack density
as a fundamental parameter, we have also carried out simulations with random crack size (in
every realization). The microcrack size is considered to vary in average between a minimum
value lmin and a maximum value equal on average to 10 lmin. The corresponding results are
shown in Fig. 5 and also lead to agreements with the NIC approximation. These results
indicate that, even for microcracks with very different sizes, interaction effects also cancel
because of randomness of the spatial distribution.
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Fig. 4. Effective Young’s modulus for randomly oriented microcracks. Crack size is constant: comparisons with
the non-interacting cracks (NIC), self-consistent (SCM) and differential scheme (DIF).



3.1.2. Effects of microcrack – boundary interactions
The sample boundary effects are also numerically investigated. The frontier of the area A is

now discretized and the preceding microcrack distributions are used. Fig. 6 shows
comparisons with the theoretical methods. One can note a clear difference with the preceding
results. The numerical values are rather in agreement with the differential approximation.
These results suggest that interaction effects cannot be neglected for the practical case of a
finite domain.

3.2. Case of parallel cracks

The study of parallel microcracks distribution is of practical interest since under tensile
loadings, the most open microcracks are normal to the load direction. Simulations are
conducted on microcracks array shown for example in Fig. 7. The variation of the effective
modulus (Fig. 8) shows that the shielding effect of microcrack interactions is more
pronounced here than in the case of randomly oriented cracks.
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Fig. 5. Effective Young’s modulus for full random distribution : comparisons with NlC, DIF and SCM.

Fig. 6. Effect of microcrack-boundary interactions for random distribution : comparisons with NlC, DIF and
SCM.
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Moreover, the decrease of the modulus for the parallel microcracks distribution is more
pronounced than for the random distribution. Finally we note that the numerical results again
coincide with the NIC approximation. When microcrack – boundary interactions are
considered the results show also good agreement with the differential method (Fig. 9).

Fig. 8. Effective Young’s modulus, for parallel microcracks: comparisons with the NIC, the DIF and the SCM
schemes.

4. Case of compressive loadings

Under compression, interactions become much more complex because of crack closure and
sliding on crack faces. Hori and Nemat-Nasser [10] have studied in the framework of SCM
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Fig. 7. Example of parallel microcrack array.

Fig. 9. Effect of microcrack – boundary interactions for parallel distribution: comparisons with the NIC, the DIF and



the stress – induced anisotropy due to frictional sliding of microcracks. Because of theoretical
difficulties, the necessity of computer experiments appears here to he of primary interest and
may allow the study of a large class of problems.

4.1. Numerical treatment of closed cracks by DDM

In the numerical simulations, cracks are prescribed to not overlap (non-interpenetration of
crack faces). This condition, classically known as Signorini’s condition, implies in the DDM
that the normal COD Dn cannot be strictly positive. Let us denote by σn and σs respectively
the normal and tangential stresses associated with a microcrack.

Hypothesis : sliding is assumed possible for closed microcracks. Coulomb’s friction law was
retained for this study.

Conditions on closed cracks are then :
no sliding :
if s nσ µ σ<  then Dn = Ds = 0
friction with sliding :
if s nσ µ σ≥  then s nσ µ σ=  ;
Dn = 0 and 0sD ≠
µ is the friction coefficient, equal to 0.5 in this study.

The numerical resolution was done by means of an iterative algorithm in which opening,
closure and sliding on microcrack faces are checked. In a first approach, a Gauss – Seidel
algorithm was used. Let us note, however, that a conjugate gradient approach (see Ref. [1])
can give similar results.

4.2. Numerical results on effective compliance under uniaxial compression

Computations carried out in this section are done with constant microcrack length at each
density level. The simulations correspond to stationary state of defects. No kinetic equations
are investigated here. This is, however, a numerical aspect under investigation. The initial
material is assumed to he isotropic with plane-strain conditions. In Voigt’s two-dimensional
notation, Hooke’s law, which relates the effective strain iε , and stress jσ , (i, j = 1, 2, 3), in a

damaged elastic material is : i ij jSε σ= where S  is the effective compliance.
Initial elastic parameters are taken as : E0= 5 X 104 MPa, v0 = 0.2. Thus, the undamaged

compliance 0S  is given in plane-strain by :
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4.2.1. Randomly distributed microcracks
The sample shown in Fig. 3 is subjected to uniaxial compression. The variations of the

compIiances 22S  (in the loading direction) and 11S  with density ρ  are similar. Results for 11S
and 33S  are plotted in Fig. 10. Unlike the case of open cracks (important increase on
compliance), very little increase is registered here. This is clearly due to the closure constraint
imposed by compression on some microcracks. 33S  remains quite constant.

0 0 5 1
11 22 1.92 10 MPaS S − −= = ×
0 0 5 1

12 21 0.48 10 MPaS S − −= = − ×
0 5 1
33 4.8 10 MPaS − −= × .



Fig. 10. Effective compliance far randomly microcracked medium under compressive loading (µ = 0.5).

4.2.2. Effect of microcracks inclined at π/6 from loading axis
The impact of crack orientation is also investigated. For this purpose, simulations were

realized with arrays in which cracks are oriented at 30° from the loading axis (Fig. 11). The
numerical results show significant anisotropy on the different compIiances (Fig. 12). From the
comparisons shown in this figure, we can conclude that the results for 11S  and 21S  agree more
with the SCM curve than with the NIC one (calculated from Ref. [10]). This suggests that
microcrack interaction effects cannot be neglected for compressive loadings. Further
investigations are needed to confirm this conclusion. Finally, some shielding effects are noted
for 22S  and 33S .

Fig 11. Example of parallel microcracks distribution tested under compressive loading.
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Fig. 12. Compressive loading. Effective compliance ratio for medium weakened by a set of parallel microcracks
oriented at π/6 from load direction (µ = 0.5) : 11S , 22S , 21S , 33S .
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5. Concluding remarks

The aim of this numerical study is to investigate the impact of interactions on the effective
stiffness of microcracked media by means of the displacement discontinuity method. A slight
adaptation of the DDM (generation of random or non-random crack distribution, iterative
algorithm for closed microcracks) is proposed. Since the unknown variables of DDM are
COD on microcracks, the effective moduli calculation is straightforward. For tensile loadings,
and when only crack – crack interactions are considered, the numerical results follow the non-
interacting cracks approximation for a wide range of densities. This is due to the cancellation
of amplification and shielding mechanisms associated with interactions where microcracks are
randomly distributed. Moreover the numerical simulations showed that these conclusions hold
for parallel distribution. Similar conclusions have been made by Kachanov [14] using a
pseudo-traction method. It can be therefore concluded that, the non-interaction hypothesis will
be sufficient for constitutive modeling. However, when microcrack – boundary interactions
are also considered, the results indicate good agreement with the differential scheme. Under
compressive loading, some microcracks are closed and subjected to friction. The results
presented in this paper showed that for randomly distributed microcracks, friction effects
decrease the impact of microcracks an effective compliance. For the studied parallel
distribution, the results seem to be more in agreement with the self-consistent method. Stress
– induced anisotropy is also noticed. Current numerical investigations are in work on more
complex distributions and on effective moduli in anisotropic media.
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