
1 INTRODUCTION

Since two decades, Continuum Damage Mechanics
(CDM) has been the subject of tremendous
researches (Krajcinovic, 1989 ; Lemaître, 1990). The
conventional phenomenological approach of damage
modelling is based on the use of internal variables
(scalar, vectorial or tensorial). This variable is
supposed to represent the salient features of  the
microcracking which generates the brittle damage. In
Kondo et al. (1992) such modelling approach was
used for a britlle sandstone. In spite of its efficiency
in some situations, the phenomenological approach
lacks to describe precisely some specific features of
brittle damage : stress - induced anisotropy,
unilateral effects due to microcracks closure (see
Chaboche, 1992). On the other hand,
micromechanical models, by using informations at
mesoscopic level, try to give more insight on the
damage phenomenon. The main purpose of the
present study is to calibrate and validate a three-
dimensional micromechanical constitutive theory
inspired from Fanella and Krajinovic (1988) and Ju
and Lee (1991). An outline of the paper is as
following. First, we summarize the mechanical
behaviour of the material characterized by a stress-
induced anisotropy and the dilatant deformations.
Then, the general framework of the
micromechanical model is presented. Calibration on
triaxial tests and numerical simulations allow to

demonstrate the strong capabilities of the model to
reproduce the experimental data. More particularly,
the comparisons of the numerical predictions with
the damaged moduli (experimentally determined by
cyclic tests) show good agreements.

2 SUMMARY OF EXPERIMENTAL RESULTS

Experiments have been conducted on a brittle
sandstone (Fontainebleau sandstone). This material
is constituted mainly by quartz grains ( 98%), the
rest being clay minerals. The average quartz grains
size is about 250 µm and the initial relative porosity
is low (about 10%). The average specific density is
237 0 2 3. ( . ) .  ± −kN m . The specimens (cylinders)
measured 37.5 mm in diameter by 75 mm in length.
They are tested under the same boundary conditions
and the current laboratory environment conditions.
Great care has been taken in the design and
sequences of the experimental frame to warrant
uniform loading of samples.

Hydrostatic and Triaxial compressive tests

Hydrostatic compressive tests are first
performed. Stress-strains (axial and lateral) curves
indicate that Fontainebleau sandstone is initially
isotropic. The experimental results for triaxial tests
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are presented in terms of deviatoric stress ( )σ σ1 3− .
σ1  is the axial stress and σ3  is the confining
pressure. Figure 1 shows the stress-strain curves for
triaxial tests with different confining pressures.
These curves correspond to a typical brittle
behaviour with stress induced anisotropy and a large
dilatancy in deformation (related to the strong non
linearity of the lateral strains). Proportional
compression tests are also performed and will serve
as validation of the modelling (see section 4).
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Figure 1 : Stress-strain curves for monotonous
triaxial compression tests

3 BRIEF PRESENTATION OF THE 3-D
MICROMECHANICAL  DAMAGE MODEL

3.1 General framework

Consider a representative elementary volume
(REV) containing a great number of microcracks
(see   for example Nemat-Nasser and Horii (1993 for
conditions on REV). It is assumed that the solid
matrix (brittle) is homogeneous and has a linear
elastic behaviour, with a initial compliance denoted
S 0 . The constitutive relations of the microcracks-
weakened solid, linking the macroscopic stress σ
and the macroscopic strain ε is described through

the overall compliance matrix  S S S d= +0 .  S d is
the inelastic part of the compliance due to
microcracks present in the REV. Such constitutive
relations can be summarised as follow (Ju, 1991) :

complementary free energy :

ψ σ σ σ σ σ*( , ) : : ( )S S S S d= = +
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state laws : ε
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The damage dissipation inequality which is
1
2

0σ σ  !S ≥  depends strongly on the rate of the

overall compliance.

Voigt’s notations are used  in all the study.

The development of the damage micromechanical
model requires :

i)  evaluation of the overall compliance for the
elastic brittle material weakened by numerous
interactive microcracks

ii)  use of precise kinetic equations for
microcracks growth.

We examine now these two points

3.2 Overall compliance of the microcracked solid

The inelastic part of the compliance S d  is
estimated from the displacement discontinuities field
(cracks opening displacements, COD) bi

' . The
general form of the solution for penny-shapped
cracks in anisotropic medium loaded in compression
(figure 2) is as given by Lee and Ju, (1991) and Ju
and Lee (1991)  (see Horii and Nemat-Nasser, 1983 
for 2-D solutions ) :

b x y a x y Ci ik k' ( ' , ' ) ' ' ' '= − − −2 1 2 2 1
1σ (3)

 Matrix C’-1 is a tensor which relates COD to the
applied (macroscopic) stress tensor. It depends on
material properties (anisotropic elastic parameters).
The prime indicates that COD are calculated in the
local frame of each microcracks. Contribution of all
microcracks to inelastic compliance is given by :
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V is the volume occupied by the RVE.  Ak  is the
area of k-th microcrack. n is the normal to the
microcrack surface.
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Figure. 2 : 3-D penny shaped microcrack geometry
and definition of axes

In fact, the summation in expression (4) is semi
analytically evaluated by average techniques. For
this, microcracks distribution is supposed to be
spatially continued and their location and orientation
are random : the initial radius and orientation of
defects are  randomly distributed on [ ]a a0 0min max

, for

radius, on 0
2

,
π





 for θ  , and on  [ ]0 2, π  for φ .

Microcracks interactions are taken into account by
use of the Self Consistent Method (SCM). In this
method each defect is assumed to be already  in the
unknown effective medium. Since the SCM is used,
an iterative algorithm is needed for the calculation of
the overall compliance.

3.3 Microcracks growth mechanisms and Kinetic
equations

Based on the previous statistical assumptions, the
initial microstructure is determined by the minimum
and maximum grain size and by the microcrack
density. Pre-existing microcracks are supposed to be
at grains-matrix interfaces (the material can be
viewed as a composite aggregate). The progressive
damage is the result of microcracks growth when the
solid is loaded. Under tensile load, cracks may

propagate in mode I (opening mode), whereas the
propagation is more complex under compression.
Based on works of Nemat-Nasser and Horii, (1982)
and Zaitsev (1983) the kinetic equations of
microcrack growth under compressive loading is
summarised as follow (figure 3).
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Figure 3 : Mechanisms of microcracks growth under
compressive load - a) sliding without propagation ;
b) propagation in unstable mode II ; c) Kinking in
mixed mode

Case b) corresponds to instantaneous crack
growth at the interface ; such growth is temporarily
stopped by the matrix energy barrier. The crack
begins to kink (case c) when the stress intensity
factor attains the critical mode I value KIc

m  in the
matrix. Propagation conditions are obtained from
classical fracture mechanics analysis. Details of such
analysis can be found in Fanella and Krajcinovic
(1988) or in Ju and Lee (1991).
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Figure 4 : 3-D compressive active damage domain



At each load step a domain of active damage
(sliding, unstable growth, kinking and opening)
depending on microcracks orientation is determined
(see figure 4).

For completeness, note that microcracks
nucleation mechanism is integrated in the analysis
via the classical Zener-Stroh model based on a
critical debonding shear stress.

4 CALIBRATION OF THE MODEL AND
NUMERICAL PREDICTIONS

4.1 Constitutive parameters and calibration of the
model

The 3-D micromechanical model requires 9
parameters which have physical meanings and then
are easy to be identified. These parameters can be
divided in two distinct classes :

Macroscopic parameters :

These parameters are the Young modulus E, the
Poisson’s ration ν , the friction coefficient, the
interfacial fracture toughness K Ic

if  and the matrix
fracture toughness K Ic

m

Mesoscopic parameters :

The precise description of the initial microstructure
requires parameters such as the minimum and
maximum grain size Dmin and Dmax , the initial
microcracks density w0 and the critical debonding
stress τ c

0 (for nucleation mechanism).

We intend here to show the capabilities of the
micromechanical damage model. The calibration is
done using the set of triaxial compression tests
presented at figure 1. Note that, except for E and ν ,
a single set of parameters is used for all the triaxial
tests. Figure 5 shows two examples of comparisons
of the numerical results and the experimental data.
The computed results correlate well these data and
confirm the efficiency of the model.
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Figure 5 : Triaxial compressive tests - Comparisons
between experiments data and numerical results

4.2 Numerical predictions of damaged moduli :
comparisons with experimental data
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triaxial compression



The detailed analysis of the results shows
that the dilatancy is essentially due to  microcracks
kinking (axial opening mode). In order to show the
importance of damage anisotropy, we have plotted at
figure 6 the variation of the normalised components
of the compliance tensor. Variation of the lateral
compliance S22  is observed to be much larger than
for the axial one S11 . The more important increase
of S S21 31=  explains the strong non-linearity of
lateral strain and then the dilatancy.

These results are interpreted in term of the moduli
and Poisson’s ratio variation (see figures 7 for test
with σ3 10= MPa ). Comparisons of predicted
values with experimental data (obtained from cyclic
compression tests) give good agreements. Note
however that the model underestimates slightly the
decrease of axial modulus.
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4.3 Proportional stress path test :

On the basis of the preceding calibration,
numerical simulations are conducted on proportional

stress path tests (experimental results are available
for this test). We present on figure 8a the predictions

for a test performed at a ratio k = =
σ
σ

1

3
30 . It is

observed that the numerical predictions are in
accordance with the tests data. In comparison with
the triaxial data ( )σ3 10= MPa , damage in the
present case is more pronounced for similar
deviatoric stress (see figure 8b).
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4.4  Influence of parameters :

A study of the influence of some parameters
has been done. We present here some illustrations



for the initial microcracks density w0  (figure 9) and
for nucleation mechanism (figure 10) in a triaxial
test ( )σ3 10= MPa . From figure 9 we note that the
material response depends strongly on its initial
damage state. The material is more dilatant when the
initial density w0  is more important. Finally the
nucleation mechanism appears to be important in the
anisotropic damage process. We observe that the
simulation without generation of new microcracks (0
pn on figure 10) leads to non negligible differences
with experimental data.
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Figure 9 : Uniaxial compression - Effect of initial
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Figure 10 : Influence of nucleation mechanism

5 Conclusions

A 3-D micromechanical damage model is
implemented and used for simulate the behaviour of
a sandstone under triaxial and proportional loadings.
The numerical results confirm the capabilities of the
modelling approach and the salient features of the
brittle damage are well reproduced by the model.

Furthermore, the numerical simulations give some
information on the importance of the various
mesoscopic mechanisms involved in the brittle
damage process. More complex stress paths are
under investigation in order to check cracks closure
effects on damage (damage desactivation). Finally,
in order to study the effect of damage on stability of
structures, we plan to introduce the model in a Finite
Element code.
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